Учеба  ->  Науки  | Автор: | Добавлено: 2015-03-23

Свойства правильных многогранников и их применения

Хотя стереометрию изучают только в старших классах школы, но с кубом, правильными пирамидами и другими простыми многогранниками знаком каждый школьник. Тема «Многогранники» имеет яркие приложения, в том числе в живописи и архитектуре. Кроме этого, в ней, по образному выражению академика Александрова, сочетаются «лёд и пламень», то есть живое воображение и строгая логика. Но в школьном курсе стереометрии мало времени уделяется правильным многогранникам. А ведь у многих правильные многогранники вызывают большой интерес, но нет возможности узнать о них больше на уроке. Именно поэтому я решила рассказать обо всех правильных многогранниках, имеющих разнообразные формы, и об их интересных свойствах.

Структура правильных многогранников очень удобна для изучения множества преобразований многогранника в себя (повороты, симметрии и т. д. ). Получающиеся при этом группы преобразований (их называют группами симметрии) оказались весьма интересными с точки зрения теории конечных групп. Эта же симметричность позволила создать серию головоломок в виде правильных многогранника, начавшуюся «кубиком Рубиком» и «молдавской пирамидкой».

Для составления реферата использовался Научно-популярный физико-математический журнал «Квант», из которого взята информация о том, что такое правильный многогранник, об их количестве, о построении всех правильных многогранников и описании всех поворотов, при которых многогранник совмещается со своим первоначальным положением. Из газеты «Математика» я получила интересные сведения о звёздчатых правильных многогранниках, их свойствах, открытии и их применении.

Теперь у вас есть возможность окунуться в мир правильного и великолепного, в мир прекрасного и необычайного, который привораживает наш взор.

1. Правильные многогранники

1. 1 Определение правильных многогранников.

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многогранники и все многогранные углы равны.

Рассмотрим возможные правильные многогранники и, прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники . В каждой её вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также правильным тетраэдром, или просто тетраэдром, что в переводе с греческого языка означает четырёхгранник.

Многогранник, гранями которого являются правильные треугольники и в каждой вершине сходится четыре грани, его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.

Многогранник, в каждой вершине которого сходиться пять правильных треугольников. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.

Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многоугольников, гранями которых являются правильные треугольники, не существует.

Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба , других правильных многогранников, у которых гранями являются квадраты, не существует. Куб имеет шесть граней и поэтому также называется гексаэдром.

Многогранник, гранями которого являются правильные пятиугольники и в каждой вершине сходятся три грани . Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.

Из определения правильного многогранника следует, что правильный многогранник «совершенно симметричный»: если отметить какую-то грань Г и одну из её вершин А, то для любой другой грани Г1 и её вершины А1 можно совместить многогранник с самим собой движением в пространстве так, что грань Г совместится с Г1 и при этом вершина А попадает в точку А1.

1. 2. Историческая справка.

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало.

Первые четыре многогранника были известны задолго до Платона. Археологи нашли додекаэдр, изготовленный во времена этрусской цивилизации по крайней мере за 500 лет до н. э. Но, видимо, в школе Платона додекаэдр был открыт самостоятельно. Существует легенда об ученике Платона Гиппазе, погибшем в море потому, что он разгласил тайну о «шаре с двенадцатью пятиугольниками».

Со времен Платона и Евклида хорошо известно, что существует ровно пять типов правильных многогранников.

Докажем этот факт. Пусть все грани некоторого многогранника -правильные п-угольники и k - число граней, примыкающих к вершине (оно одинаково для всех вершин). Рассмотрим вершину А нашего многогранника. Пусть M1, М2,. , Mk - концы k выходящих из неё рёбер; поскольку двугранные углы при этих рёбрах равны, AM1M2Mk - правильная пирамида: при повороте на угол 360º/k вокруг высоты АН вершина М переходит в М, вершина M1 - в М2. Mk в M1 .

Сравним равнобедренные треугольники AM1M2 и HM1M2 У них основание общее, а боковая сторона AM1 больше HM1, поэтому M1AM2 < M1HM2 = 360º/k. Но угол M1AM2 - это угол правильного п-угольника на плоскости, т. е. 180º (п - 2)/п. Итак, 180k(n - 2)/n < 360°, k(n - 2) < 2n, k < 2n/(n - 2). Из этого неравенства (и того факта, что , k ≤ 3) нетрудно вывести, что для чисел п и k возможны лишь случаи, указанные в таблице.

n k В Г Р

Тетраэдр 3 3 4 4 6

Куб 4 3 8 6 12

Октаэдр 3 4 6 8 12

Додекаэдр 5 3 20 12 30

Икосаэдр 3 5 12 20 30

1. 3. Построение правильных многогранников.

Все соответствующие многогранники можно построить, взяв за основу куб.

Чтобы получить правильный тетраэдр, достаточно взять четыре несмежные вершины куба и отрезать от него пирамидки четырьмя плоскостями, каждая из которых проходит через три из взятых вершин

Такой тетраэдр можно вписать в куб двумя способами.

Пересечение двух таких правильных тетраэдров - это как раз правильный октаэдр: многогранник из восьми треугольников с вершинами, расположенными в центрах граней куба .

2. Свойства правильных многогранников.

2. 1. Сфера и правильные многогранники.

Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Радиус описанной сферы Название многогранника Радиус вписанной сферы

Тетраэдр

Октаэдр

Додекаэдр

Икосаэдр

2. 1. Самосовмещения многогранников.

Какие самосовмещения (вращения, переводящие в себя) есть у куба, тетраэдра и октаэдра? Заметим, что некоторая точка-центр многогранника - при любом самосовмещении переходит в себя, так что все самосовмещения имеют общую неподвижную точку.

Посмотрим, какие вообще в пространстве бывают вращения с неподвижной точкой А. Покажем, что такое вращение обязательно является поворотом на некоторый угол вокруг некоторой прямой проходящей через точку А. Достаточно у нашего движения F(c F(A) = A) указать неподвижную прямую. Найти её можно так: рассмотрим три точки M1, M2 = F(M1) и M3 = F(M2), отличные от неподвижной точки А, проведём через них плоскость и опустим на неё перпендикуляр АН - это и будет искомая прямая. (Если М3 = М1, то наша прямая проходит через середину отрезка M1M2, a F - осевая симметрия: поворот на угол 180°).

Итак, самосовмещение многогранника обязательно является поворотом вокруг оси, проходящей через центр многогранника. Эта ось пересекает наш многогранник в вершине или во внутренней точке ребра или грани. Следовательно, наше самосовмещение переводит в себя вершину, ребро или грань, значит, оно переводит в себя вершину, середину ребра или центр грани. Вывод: движение куба, тетраэдра или октаэдра, совмещающее его с собой, есть вращение вокруг оси одного из трёх типов: центр многогранника - вершина, центр многогранника - середина ребра, центр многогранника - центр грани.

Вообще, если многогранник совмещается с самим собой при повороте вокруг прямой на угол 360°/m, то эту прямую называют осью симметрии m-го порядка.

2. 2. Движение и симметрии.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают.

Рассматривая самосовмещения многогранников, можно включить в их число не только вращения, но и любые движения, переводящие многогранник в себя. Здесь движение - это любое преобразование пространства, сохраняющее попарные расстояния между точками.

В число движений, кроме вращений, нужно включить и зеркальные движения. Среди них - симметрия относительно плоскости (отражение), а также композиция отражения относительно плоскости и поворота вокруг перпендикулярной ей прямой (это - общий вид зеркального движения, имеющего неподвижную точку). Конечно, такие движения нельзя реализовать непрерывным перемещением многогранника в пространстве.

Рассмотрим подробнее симметрии тетраэдра. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии.

Прямые симметрии остальных правильных многогранников можно вычислить по формуле [(q - 1)N0 + N1 + (p - 1)N2]/2 + 1, где р-число сторон правильных многоугольников, являющихся гранями многогранника, q – число граней, примыкающих к каждой вершине, N0 – число вершин, N1 – число ребер и N2 – число граней каждого многогранника.

Гексаэдр и октаэдр имеют по 24 симметрии, а икосаэдр и додекаэдр– по 60 симметрий.

Все правильные многогранники имеют плоскости симметрии (у тетраэдра их - 6, у куба и октаэдра - по 9, у икосаэдра и додекаэдра - по 15).

2. 3. Звёздчатые многогранники.

Кроме правильных многогранников красивые формы имеют звёздчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 - 1630), а два других почти 200 лет спустя построил Л. Пуансо (1777 - 1859). Именно поэтому правильные звёздчатые многогранники называются телами Кеплера - Пуансо. Они получаются из правильных многогранников продолжением их граней или рёбер. Французский геометр Пуансо в 1810 году построил четыре правильных звёздчатых многогранника: малый звёздчатый додекаэдр, большой звёздчатый додекаэдр, большой додекаэдр и большой икосаэдр. У этих четырёх многогранников грани - пересекающиеся правильные многогранники, а у двух из них каждая из граней представляет собой самопересекающийся многоугольник. Но Пуансо не сумел доказать, что других правильных многогранников не существует.

Спустя год (в 1811г. ) это сделал французский математик Огюстен Луи Коши (1789 - 1857). Он воспользовался тем, что согласно определению правильного многогранника, его можно наложить на самого себя так, что произвольная его грань совместится с наперёд выбранной. Из этого следует, что все грани звёздчатого многогранника равноудалены от некоторой точки-центра сферы, вписанной в многогранник.

Плоскости граней звёздчатого многогранника, пересекаясь, образуют ещё и правильный выпуклый многогранник, то есть платоново тело, описанное около той же сферы. Это платоново тело Коши назвал ядром данного звёздчатого многогранника. Тем самым звёздчатый многогранник можно получить, продолжая плоскости граней одного из платоновых тел.

Из тетраэдра, куба и октаэдра звёздчатые многогранники получить нельзя. Рассмотрим додекаэдр. Продолжение его рёбер приводит к замене каждой грани, звёздчатым правильным пятиугольником, а в результате получается малый звёздчатый додекаэдр .

На продолжении граней додекаэдра возможны следующие два случая: 1) если рассматривать правильные пятиугольники, то получается большой додекаэдр .

2) если же в качестве граней рассматривать звёздчатые пятиугольники, то получается большой звёздчатый додекаэдр .

Икосаэдр имеет одну звёздчатую форму. При продолжении грани правильного икосаэдра получается большой икосаэдр .

Таким образом, существует четыре типа правильных звёздчатых многогранников.

Звёздчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений.

Многие формы звёздчатых многогранников подсказывает сама природа. Снежинки – это звёздчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Заключение

В работе раскрыты следующие темы: правильные многогранники, построение правильных многогранников, самосовмещение, движение и симметрии, звёздчатые многогранники и их свойства. Мы узнали, что существует всего лишь пять правильных многогранника и четыре звёздчатых правильных многогранника, которые нашли широкое применение в различных областях.

Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Структура правильных многогранников очень удобна для изучения множества преобразований многогранника в себя (повороты, симметрии и т. д. ). Получающиеся при этом группы преобразований (их называют группами симметрии) оказались весьма интересными с точки зрения теории конечных групп. Эта же симметричность позволила создать серию головоломок в виде правильных многогранников, начавшуюся «кубиком Рубиком» и «молдавской пирамидкой».

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)