Дом  ->  Квартира и дача  | Автор: | Добавлено: 2015-03-23

Почему Луна не падает на Землю

Все в этом мире притягивается ко всему. И для этого не нужно обладать какими-то специальными свойствами (электрическим зарядом, участвовать во вращении, иметь размер не меньше какого-то. ). Достаточно просто существовать, как существует человек или Земля, или атом. Тяготение или, как часто говорят физики, гравитация - самое универсальное взаимодействие. И все-таки: все притягивается ко всему. Но как именно? По каким законам? Как это ни удивительно, закон этот один, и причем, он один и тот же для всех тел во Вселенной - и для звезд, и для электронов.

1. Законы Кеплера

Ньютон утверждал, что между Землёй и всеми материальными телами существует сила тяготения, которая обратно пропорциональна квадрату расстояния.

В XIV веке астроном из Дании Тихо Браге почти 20 лет наблюдал за движением планет и записывал их положения, и смог с наибольшей возможной в то время точностью определить их координаты в различные моменты времени. Его помощник, математик и астроном Иоганн Кеплер, проанализировал записи учителя и сформулировал три закона движения планет:

Первый закон Кеплера

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Форму эллипса степень его сходства с окружностью будет тогда характеризовать отношение: e=c/d , где c - расстояние от центра эллипса до его фокуса (половина меж фокусного расстояния); a - большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в окружность с радиусом a.

Второй закон Кеплера (Закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём площадь сектора орбиты, описанная радиус-вектором планет, изменяется пропорционально времени.

Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удалённая точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелие больше, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее; поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (Гармонический закон)

Третий, или гармонический, закон Кеплера связывает среднее расстояние планеты от Солнца (a) с ее орбитальным периодом (t):

где индексы 1 и 2 соответствуют любым двум планетам.

Ньютон принял эстафету Кеплера. К счастью, от Англии 17-го века осталось немало архивов, писем. Проследим за рассуждениями Ньютона.

Надо сказать, что орбиты большинства планет мало отличаются от круговых. Поэтому будем считать, что планета движется не по эллипсу, а по окружности радиуса R - это не меняет сути вывода, но сильно упрощает математику. Тогда третий закон Кеплера (он остается в силе, ведь окружность - частный случай эллипса) можно сформулировать так: квадрат времени одного оборота по орбите (T2) пропорционален кубу среднего расстояния (R3) от планеты до Солнца:

T2=CR3 (экспериментальный факт).

Здесь С - некоторый коэффициент (постоянная - одна и та же для всех планет).

Т. к. время одного оборота T можно выразить через среднюю скорость движения планеты по орбите v: T=2(R/v, то третий закон Кеплера принимает следующий вид:

4(2R2/v2=СR3.

Или после сокращения 4(2 /v2=СR.

Теперь учтем, что согласно второму закону Кеплера движение планеты по круговой траектории происходит равномерно, т. е. с постоянной по величине скоростью. Из кинематики нам известно, что ускорение тела, движущегося по окружности с постоянной скоростью, будет чисто центростремительным и равным v2/R. А тогда сила, действующая на планету, по второму закону Ньютона будет равна

F=ma=m v2/R.

Выразим отношение v2/R из закона Кеплера v2/R=4(2 /СR2 и подставим его во второй закон Ньютона:

F= m v2/R=m4(2 /СR2 = k(m/R2), где к=4(2 /С - постоянная для всех планет величина.

Итак, для любой планеты сила, действующая на нее, прямо пропорциональна ее массе и обратно пропорциональна квадрату ее расстояния от Солнца:

F=k(m/R2).

Солнце - источник силы, действующей на планету, следует из первого закона Кеплера.

Но если Солнце притягивает планету с силой F, то и планета (по третьему закону Ньютона) должна притягивать Солнце с той же по величине силой F. Причем, эта сила по своей природе ничем не отличается от силы со стороны Солнца: она тоже гравитационная и, как мы показали, тоже должна быть пропорциональна массе (на сей раз - Солнца) и обратно пропорциональна квадрату расстояния: F=k1(M/R2), здесь коэффициент к1 - свой для каждой планеты (возможно, он даже зависит от ее массы!).

Приравнивая обе силы тяготения, мы получаем: km=k1M. Это возможно при условии, что k=(M, а k1=(m, т. е. при F=((mM/R2), где ( - постоянная - одна и та же для всех планет.

Поэтому всемирная гравитационная постоянная ( не может быть любой - при выбранных нами единицах величин - только такой, какой ее выбрала природа. Измерения дают примерное значение ( = 6,7 х10-11 Н. м2/кг2.

2. Закон всемирного тяготения

Ньютон получил замечательный закон, описывающий гравитационное взаимодействие любой планеты с Солнцем:

Следствиями этого закона оказались все три закона Кеплера. Это было колоссальным достижением - найти (один!) закон, управляющий движением всех планет Солнечной системы. Если бы Ньютон ограничился только этим, мы все равно вспоминали бы его при изучении физики в школе и называли бы выдающимся ученым.

Ньютон был гением: он предположил, что тот же самый закон управляет гравитационным взаимодействием любых тел, он описывает поведение Луны, вращающейся вокруг Земли, и яблока, падающего на Землю. Это была удивительная мысль. Ведь общее мнение было - небесные тела движутся по своим (небесным) законам, а земные тела - по своим, “мирским” правилам. Ньютон предположил единство законов природы для всей Вселенной. В 1685 г. И. Ньютон сформулировал закон всемирного тяготения:

Любые два тела (а точнее, две материальные точки) притягиваются по направлению друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

Закон всемирного тяготения - один из лучших примеров, показывающих, на что способен человек.

Сила тяготения, в отличие от сил трения и упругих, не является контактной силой. Этой силе требуется соприкосновения двух тел, чтобы они гравитационно взаимодействовали. Каждое из взаимодействующих тел создает во всем пространстве вокруг себя гравитационное поле - такую форму материи, посредством которой тела гравитационно взаимодействуют друг с другом. Поле, созданное каким-то телом, проявляется в том, что действует на любое другое тело с силой, определяемой всемирным законом тяготения.

3. Перемещение Земли и Луны в пространстве.

Луна, естественный спутник Земли, в процессе своего движения в пространстве испытывает влияние главным образом двух тел - Земли и Солнца. Рассчитаем силу, с которой Солнце притягивает Луну, применив закон всемирного тяготения, получим, что солнечное притяжение в два раза сильнее земного.

Почему же Луна не падает на Солнце? Дело в том, что и Луна, и Земля обращаются вокруг общего центра масс. Общий центр масс Земли и Луны обращается вокруг Солнца. Где находится центр масс системы Земля — Луна? Расстояние от Земли до Луны составляет 384 000 км. Отношение массы Луны к массе Земли равно 1:81. Расстояния от центра масс до центров Луны и Земли будут обратно пропорциональны этим числам. Разделив 384 000 км на 81, получим примерно 4700 км. Значит, центр масс находится на расстоянии 4700 км от центра Земли.

* А чему равен радиус Земли?

* Около 6400 км.

* Следовательно, центр масс системы Земля — Луна лежит внутри земного шара. Поэтому, если не гнаться за точностью, можно говорить об обращении Луны вокруг Земли.

Перемещения Земли и Луны в пространстве и изменение их взаимного положения по 'отношению к Солнцу показаны на схеме.

При двукратном преобладании солнечного притяжения над земным кривая движения Луны должна быть вогнутой по отношению к Солнцу во всех своих точках. Влияние близкой Земли, существенно превышающей по массе Луну, приводит к тому, что величина кривизны лунной гелиоцентрической орбиты периодически меняется.

Луна обращается вокруг Земли, удерживаемая силой притяжения. С какой силой Земля притягивает Луну?

Это можно определить по формуле, выражающей закон тяготения: F=G*(Mm/r2) где G — гравитационная постоянная, Mm — массы Земли и Луны, r — расстояние между ними. Сделав вычисление, мы пришли к тому, что Земля притягивает Луну с силой около 2-1020 Н.

Все действие силы притяжения Луны Землей выражается лишь в удержании Луны на орбите, в сообщении ей центростремительного ускорения. Зная расстояние от Земли до Луны и число оборотов Луны вокруг Земли, Ньютон определил центростремительное ускорение Луны, получилось уже известное нам число: 0,0027 м/с2. Хорошее соответствие расчетного значения центростремительного ускорения Луны с его действительным значением подтверждает предположение о единой природе силы, удерживающей Луну на орбите, и силы тяжести. Луну на орбите мог бы удержать стальной канат, имеющий диаметр около 600 км. Но, не смотря на такую огромную силу притяжения, Луна не падает на Землю.

Луна удалена от Земли на расстояние, равное примерно 60 земным радиусам. Следовательно, рассуждал Ньютон. Луна, падая с таким ускорением, должна бы приблизиться к Земле за первую секунду на 0,0013 м. Но Луна, кроме того, движется и по инерции в направлении мгновенной скорости, т. е. по прямой, касательной в данной точке к ее орбите вокруг Земли

Двигаясь по инерции, Луна должна удалиться от Земли, как показывает расчёт, за одну секунду на 1,3 мм. Разумеется, такого движения, при котором за первую секунду Луна двигалась бы по радиусу к центру Земли, а за вторую секунду – по касательной, в действительности не существует. Оба движения непрерывно складываются. В результате Луна движется по кривой линии, близкой к окружности.

Обращаясь вокруг Земли, Луна движется по орбите со скоростью 1 км/сек, т. е достаточно медленно, чтобы не покинуть свою орбиту и "улететь" в космос, но и достаточно быстро, чтобы не упасть на Землю. Можно сказать, что Луна упадет на Землю только в том случае, если не будет двигаться по орбите, т. е. если внешние силы (некая космическая рука) остановят Луну в ее движении по орбите, то она естественным образом упадет на Землю. Однако при этом выделится столько энергии, что говорить о падении Луны на Землю, как твердого тела не приходится. Из всего изложенного можно сделать вывод.

Луна падает, но не может упасть. И вот почему. Движение Луны вокруг Земли является результатом компромисса между двумя "желаниями" Луны: двигаться по инерции - по прямой (из-за наличия скорости и массы) и падать "вниз" на Землю (тоже из-за наличия массы). Можно сказать так: всемирный закон тяготения призывает Луну упасть на Землю, но закон инерции Галилея "уговаривает" ее вообще не обращать на Землю внимания. В результате получается нечто среднее - орбитальное движение: постоянное, без окончания, падение.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)