Учеба  ->  Среднее образование  | Автор: | Добавлено: 2015-03-23

Измерительные работы на местности

На первых этапах своего развития геометрия представляла собой набор полезных, но не связанных между собой правил и формул для решения задач, с которыми люди сталкивались в повседневной жизни. Лишь много веков спустя учеными Древней Греции была создана теоретическая основа геометрии.

В древнейшие времена египтяне, приступая к постройке пирамиды, дворца или обыкновенного дома, сначала отмечали направления сторон горизонта (это очень важно, так как освещенность в строении зависит от положения его окон и дверей по отношению к Солнцу). Действовали они так. Втыкали вертикально палку и следили за ее тенью. Когда эта тень становилась кратчайшей, тогда ее конец указывал точное направление на север.

Египетский треугольник

Для измерения площади древние египтяне использовали особый треугольник, у которого были фиксированные длины сторон. Занимались измерениями особые специалисты, которые назывались «натягивателями каната» (гарпедонаптай). Они брали длинную веревку, делили ее на 12 равных частей узелками, а концы веревки связывали. На направлении север – юг они устанавливали два кола на расстоянии четырех частей , отмеченных на веревке. Затем при помощи третьего кола натягивали связанную веревку так, чтобы образовался треугольник, у которого одна сторона имела три части, другая – четыре, а третья пять частей. Получался прямоугольный треугольник, площадь которого принимали за эталон.

Определение недоступных расстояний

История геометрии хранит немало приемов решения задач на нахождение расстояний. Одной из таких задач – это определение расстояний до кораблей находящихся в море.

Первый способ основан на одном из признаков равенства треугольников

Пусть корабль находится в точке К, а наблюдатель – в точке А. Требуется определить расстояние КА. Построив в точке А прямой угол, необходимо отложить на берегу два равных отрезка:

АВ = ВС. В точке С вновь построить прямой угол, причем наблюдатель должен идти по перпендикуляру до тех пор, пока не дойдет до точки D, из которой корабль К и точка В были бы видны лежащими на одной прямой. Прямоугольные треугольники ВСD и ВАК равны, следовательно, СD = АК, а отрезок СD можно непосредственно измерить.

Второй способ - триангуляции

С его помощью измерялись расстояния до небесных тел. Этот метод включает три этапа:

□ Измерить углы α, β и расстояние АВ;

□ Построить треугольник А1 В1К1 с углами α и β при вершинах А1 и В1 соответственно;

□ Учитывая подобие треугольников АВК и А1 В1К1 и равенство

АК : АВ = А1К1 : А1 В1, по известным длинам отрезков АВ, А1К1 и , А1 В1 нетрудно найти длину отрезка АК.

Прием, которым пользовались в русской военной инструкции начала XVII в.

Задача. Найти расстояние от точки А до точки В.

Решение.

В точке А нужно выбрать жезл примерно в человека. Верхний конец жезла следует совместить с вершиной прямого угла угольника так, чтобы продолжение одного из катетов проходило через точку В. Далее нужно отметить точку С пересечения продолжения другого катета с землей. Тогда, воспользовавшись пропорцией

АВ : АD = АD : АС, легко вычислить длину АВ; АВ = АD2 / АС. Для того, чтобы упростить расчеты и измерения, рекомендуется разделить жезл на 100 или 1000 равных частей.

Древнекитайский прием измерения высоты недоступного предмета.

Огромный вклад в развитие прикладной геометрии внес крупнейший китайский математик III века Лю Хуэй. Ему принадлежит трактат «Математика морского острова», в котором приведены решения различных задач на определение расстояний до предметов, расположенных на отдаленном острове, и вычисление недоступных высот. Эти задачи довольно сложны. Но они имеют практическую ценность, поэтому получили широкое применение не только в Китае, но и за ее пределами.

Задача.

Наблюдают морской остров. Для этого установили пару шестов одинаковой высоты в 3 чжана на расстоянии 1000 бу. Основания обоих шестов находятся на одной прямой с островом. Если отойти по прямой от первого шеста на 123 бу, то глаз человека лежащего на земле, будет наблюдать верхний конец шеста совпадающим с вершиной острова. Такая же картина получится, если отойти от второго шеста на 127 бу.

Какова высота острова?

В привычных для нас обозначениях решение данной задачи, основанное на свойствах подобия.

Пусть EF = КD = 3 чжана = 5 бу, ЕD = 1000бу, ЕМ = 123 бу, СD = 127 бу.

Определить АВ и АЕ.

Решение.

Треугольники АВМ и ЕFМ, АВС и DКС подобны. Следовательно, ЕF:АВ = ЕМ:АМ и КD:АВ = DС:АС. Получим: ЕМ:АМ = DС:АС, или ЕМ: (АЕ + ЕМ) = СD: (АЕ + ЕD + DС). В результате найдем АЕ = 123·1000: (127 – 123) = 30750 (бу). Подобны и треугольники А1ВF и ЕFМ, а АВ = А1В + А1А. Отсюда АВ = 5·1000(127 – 123) + 5 = 1255 (бу)

Рецепт, который предлагал Лю Хуэй.

Как найти высоту острова?

□ Высоту шеста умножь на расстояние между шестами – это делимое.

□ Разность между отступлениями будет делителем, раздели на нее.

□ Что получится, прибавь высоту шеста.

□ Получим высоту острова.

Рецепт, который предлагал Лю Хуэй.

Расстояние до недоступной точки.

❖ Отступление от предыдущего шеста умножить на расстояние между шестами – это делимое.

❖ Разность между отходами будет делителем, раздели на нее.

❖ Получим расстояние, на которое остров отдален от шеста.

Прикладная геометрия была незаменима для землемерия, мореплавания и строительства. Таким образом геометрия сопровождало человечество на протяжении всей истории его существования. Решение отдельных старинных задач прикладного характера могут найти применение и в настоящее время, а поэтому заслуживают внимания и сегодня.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)