Учеба  ->  Среднее образование  | Автор: | Добавлено: 2015-03-23

Применение метода математической индукции в решении задач

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Например, в математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие «следовать за» тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.

Индукция – метод рассуждения, ведущий от частных примеров к некоторому общему выводу (индукция – латинское слово, означающее «наведение»). Метод индукции в самом общем смысле состоит в переходе от частных формулировок к формулировке универсальной.

Рассмотрим математическую индукцию. Метод математической индукции применяется, когда хотят доказать, что некоторое утверждение справедливо для всех натуральных чисел.

Математическая индукция— один из важнейших методов доказательства в математике, основанный на аксиоме (принципе) математической индукции.

Аксиома математической индукции формулируется так:

1. Проверяется справедливость некоторого утверждения при n = р0.

2. Предполагается, что это утверждение верно при n = к, к ≥ р0.

3. Доказывается, что утверждение верно при n=k+1.

Первый факт называется базисом индукции, второй — индукционным переходом или шагом индукции. Индукционный переход включает и себя посылку (или предположение) индукции (утверждение верно при n = k) и заключение (утверждение верно при п = k + 1). Другими словами, шаг индукции состоит в переходе от посылки к заключению, т. е. в выводе, что заключение верно, если верна посылка. В целом весь логический приём, позволяющий заключить, что рассматриваемое утверждение верно для всех натуральных чисел, коль скоро справедливы и базис, и переход, называется принципом математической индукции. На нём и основан метод математической индукции. Этот метод может быть успешно применён в том случае, когда имеется некоторое утверждение А, зависящее от параметра, принимающего натуральные значения, и требуется доказать, что А справедливо при всяком значении параметра.

Говоря об индукции вообще (т. е. не только в математике), различают полную и неполную индукцию.

Полная индукция

Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса определенного признака делают вывод о его принадлежности классу в целом.

Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элементов, в которых является конечным и легко обозримым. Выраженная в посылках этого умозаключения информация о каждом элементе или каждой части класса служит показателем полноты исследования и достаточным основанием для логического переноса признака на весь класс. Тем самым вывод в умозаключении полной индукции носит демонстративный характер. Это означает, что при истинности посылок заключение в выводе будет необходимо истинным.

В одних случаях полная индукция дает утвердительные заключения, если в посылках фиксируется наличие определенного признака у каждого элемента или части класса. В других случаях в качестве заключения может выступать отрицательное суждение, если в посылках фиксируется отсутствие определенного признака у всех представителей класса.

Познавательная роль умозаключения полной индукции проявляется в формировании нового знания о классе или роде явлений. Логический перенос признака с отдельных предметов на класс в целом не является простым суммированием. Знание о классе или роде — это обобщение, представляющее собой новую ступень по сравнению с единичными посылками.

Демонстративность полной индукции позволяет использовать этот вид умозаключения в доказательном рассуждении. Применимость полной индукции в рассуждениях определяется практической перечислимостью множества явлений. Если невозможно охватить весь класс предметов, то обобщение строится в форме неполной индукции.

Неполная индукция. Популярная индукция

Неполная индукция — это умозаключение, в котором на основе принадлежности признака некоторым элементам или частям класса делают вывод о его принадлежности классу в целом.

Неполнота индуктивного обобщения выражается в том, что исследуют не все, а лишь некоторые элементы или части класса. Логический переход в неполной индукции от некоторых ко всем элементам или частям класса не является произвольным. Он оправдывается эмпирическими основаниями — объективной зависимостью между всеобщим характером признаков и устойчивой их повторяемостью в опыте для определенного рода явлений. Отсюда широкое использование неполной индукции в практике. Индуктивный переход от некоторых ко всем не может претендовать на логическую необходимость, поскольку повторяемость признака может оказаться результатом простого совпадения.

Тем самым для неполной индукции характерно ослабленное логическое следование — истинные посылки обеспечивают получение не достоверного, а лишь проблематичного заключения. При этом обнаружение хотя бы одного случая, противоречащего обобщению, делает индуктивный вывод несостоятельным.

На этом основании неполную индукцию относят к правдоподобным (недемонстративным) умозаключениям. В таких выводах заключение следует из истинных посылок с определенной степенью вероятности, которая может колебаться от маловероятной до весьма правдоподобной.

Существенное влияние на характер логического следования в выводах; неполной индукции оказывает способ отбора исходного материала.

Задачи на использование метода математической индукции.

- на доказательство теоремы

Пример:

Пусть имеется выпуклая фигура и внутри ее взяты n точек. Тогда центр масс этих точек тоже принадлежит фигуре.

Доказательство проведем по индукции.

Докажем базу: центр масс двух точек по определению принадлежит соединяющему их отрезку, в силу выпуклости фигуры, принадлежит фигуре.

База доказана, теперь шаг индукции. Цент масс n+1 точек – это, в силу определения, центр масс двух точек: любой одной и центра масс всех остальных, которых n штук. В силу предположения индукции центр масс этих остальных n точек принадлежит фигуре, а значит, центр масс его и (n+1)-й точки тоже принадлежит фигуре, так как по определению лежит на отрезке, соединяющем эти две точки нашей выпуклой фигуры, что и требовалось доказать.

- на нахождение суммы

Пример:

Найдите сумму +

S(1)= S(2)= S(3)=S(2)+ Можно предположить, что S(n)=

Докажем это. Для n=1 формула верна. Предположим, что она будет верна и для n=k+1:

S(k+1)=S(k)+

- на доказательство неравенств

Пример 1:

Пусть х1, х2,. , хn — произвольные положительные числа, причем x1x2xn = 1. Доказать, что х1 + х2 +. +хn ≥ n.

1. Если n = 1, то по условию х1 = 1 и, следовательно, можно написать x1 ≥ 1, т. е. для n = 1 утверждение верно.

2. Предположим, что утверждение верно для n = k. Пусть х1,х2,. ,хk,хk + 1 - произвольные положительные числа и х1х2хkхk+1 = 1.

Могут представиться два случая: либо все эти числа равны 1, и тогда их сумма равна k+1 и неравенство доказано, либо среди этих чисел есть хотя бы одно число, не равное единице, и тогда обязательно есть, по крайней мере, еще одно число, не равное единице, причем если одно из них меньше единицы, то другое больше единицы. Не ограничивая общности, можно считать, что хk > 1, а хk + 1 < 1. Рассмотрим теперь k чисел x1, x2,, xk-1, (xkxk+1).

Произведение их равно единице, и, следовательно, по индуктивному предположению x1 + x2 + + xk-1+ xkxk+1 ≥ k.

Прибавим к обеим частям последнего неравенства хk+хk+1,перенесем xkxk+1направо и преобразуем правую часть неравенства: x1 + x2 + + xk + xk+1 ≥ k - xkxk+1+хk + хk+1 =

= k+1 +хk(1-хk+1) + хk+1- 1=k+1+хk(1- хk+1) - (1 - хk+1) =

= k + 1+(1 - хk+1)(xk - l) ≥ k + l.

Таким образом, из истинности утверждения при n = k вытекает его истинность при n = k+ 1. Утверждение доказано. Из приведенного доказательства следует, что знак равенства в доказываемом соотношении имеет место тогда и только тогда, когда x1 = х2 =. = хn = 1.

Пример 2:

Доказать неравенство

Где x1, x2,. , x3 – произвольные положительные числа.

Это важное неравенство между средним арифметическим и средним геометрическим n чисел является простым следствием соотношения, доказанного в предыдущем примере. В самом деле, пусть х1, х2,. , хn — произвольные положительные числа. Рассмотрим n чисел

Очевидно, что все эти числа положительны и произведение их равно единице. Следовательно, по доказанному в предыдущем примере их сумма больше или равна n, т. е.

причем знак равенства имеет место тогда и только тогда, когда x1 = х2 =. = хn.

Неравенство между средним арифметическим и средним геометрическим n чисел часто оказывается полезным при доказательстве других неравенств, при отыскании наименьших и наибольших значений функций.

- на вывод формулы прогрессии

Пример.

Пусть (an) – арифметическая прогрессия, у которой разность равна d.

a1=a1 a2=a1+d=a1+1d a3=a2+d=a1+d+d= a1+2d a4=a3+d=a1+2d+d= a1+3d a5=a4+d=a1+3d+d= a1+4d

Анализ этих равенств позволяет высказать гипотезу, что an=a1+(n – 1)d. Эта гипотеза верна при любом nN.

- на делимость

Пример 1:

Доказать истинность предложения

А (n) = {число 5∙23n-2 + З3n-1 кратно 19}, nN.

1. Высказывание А (1) = {число 5∙2 +З2 кратно 19} истинно.

2. Предположим, что для некоторого значения n = k

А(k) = {число 5∙23k-2 + З3k-1 кратно 19} истинно. Тогда, так как 5∙23(k+1)-2 + З3(k+1)-1 =

8 ∙5∙23k-2 + 27∙ З3k-1 = 8 (5∙23k-2 + З3k-1) + 19 ∙З3k-1, очевидно, что и А(k + 1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что А (k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение А (k) истинно при всех значениях n.

- на доказательство тождеств

Пример 1:

Доказать, что при любом натуральном n верно равенство:

1*2+2*3+3*4+4*5++n(n+1)=.

Доказательство.

1) Проверяем утверждение при n=1.

Неравенство выполняется.

2) Предположим, что равенство верно при n=k, т. е.

1*2+2*3+3*4+4*5++k(k+1)=

3) Докажем утверждение при n=k+1:

1*2+2*3+3*4+4*5++ k(k+1)+(k+1)(k+2)=+ (k+1)(k+2)=

Таким образом, мы убедились, что доказываемое утверждение справедливо при любом n ϵ N.

-задачи реальной действительности

Пример 1:

Докажем, что сумма внутренних углов выпуклого n-угольника равна π(n-2).

1. Минимальное число углов — три. Поэтому начнем доказательство с n = 3. Получаем, что для треугольника формула дает π (3~2) = π Утверждение для n = 3 справедливо.

2. Допустим, что формула верна при n=k. Докажем, что она верна для любого выпуклого

(к +1) -угольника. Разобьем

(к +1) -угольник диагональю так, что получим k-угольник и треугольник (см. рисунок).

Так как формула верна для треугольника и k-угольника, получаем π (к - 2) + π = π (к -1).

То же мы получим, если в исходную формулу подставить п = к + 1 : π (к +1 - 2) = π (к -1).

Пример 2:

Имеется лестница, все ступени которой одинаковы. Требуется указать минимальное число положений, которые гарантировали бы возможность «забраться» на любую по номеру ступеньку.

Все согласны с тем, что должно быть условие. Мы должны уметь забраться на первую ступень. Далее должны уметь с 1-ой ступеньки забраться на вторую. Потом во второй – на третью и т. д. на n-ую ступеньку. Конечно, в совокупности же «n» утверждений гарантирует нм то, что мы сможем добраться до n-ой ступеньки.

Посмотрим теперь на 2, 3,. , n положение и сравним их друг с другом. Легко заметить, что все они имеют одну и ту же структуру: если мы добрались до k ступеньки, то можем забраться на (k+1) ступеньку. Отсюда становится естественной такая аксиома для справедливости утверждений, зависящих от «n»: если предложение А(n), в котором n – натуральное число, выполняется при n=1 и из того, что оно выполняется при n=k (где k – любое натуральное число), следует, что оно выполняется и для n=k+1, то предположение А(n) выполняется для любого натурального числа n.

Заключение.

Итак, индукция (от лат. inductio — наведение, побуждение) — одна из форм умозаключения, приём исследования, применяя который от знания отдельных фактов идут к обобщениям, к общим положениям. Метод математической индукции – метод доказательства, основанный на так называемой аксиоме (принципе) математической индукции. Индукция бывает полная и неполная. Применяя полную индукцию, мы лишь тогда считаем себя вправе объявить об истинности универсальной формулировки, когда убедились в её истинности для каждого без исключения значения n. Метод неполной индукции состоит в переходе к универсальной формулировке после проверки истинности частных формулировок для отдельных, но не всех значений n.

Метод математической индукции является одной из теоретических основ при решении задач: реальной действительности, на нахождение суммы, на доказательство некоторых теорем по геометрии, физике, на решение неравенств, на вывод формул для прогрессии, на делимость, на доказательство тождеств.

Знакомясь с методом математической индукции, я изучала специальную литературу, консультировалась с педагогом, анализировала данные и решения задач, пользовалась Интернетом, выполняла необходимые вычисления.

В ходе работы я узнала: чтобы решать задачи методом математической индукции нужно знать и понимать основной принцип математической индукции.

Достоинством метода математической индукции является его универсальность, так как с помощью этого метода можно решить многие задачи. А недостатком неполной индукции является то, что порой она приводит к ошибочным выводам.

Обобщив и систематизировав знания по математической индукции, убедилась в необходимости знаний по теме «метод математической индукции» в реальной действительности. Кроме того эти знания повышают интерес к математике, как к науке.

Так же в ходе работы приобрела навыки решения задач по использованию метода математической индукции. Считаю, что эти навыки помогут мне в будущем в освоении избранной мною специальности на современном уровне.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)