Учеба  ->  Среднее образование  | Автор: | Добавлено: 2015-03-23

Параллельные прямые

В «Началах» Евклида учения о параллельных излагается в одной из его 13 книг. Оно начинается с определения: «параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченном, ни стой, ни с другой стороны, между собой не встречаются».

Древнегреческий ученый Прокл, комментируя первую книгу «Начала», указывает, что еще в те времена существовали и другие определения параллельных; так, Посидоний(1 век до н. э. ) предлагает называть параллельными две прямые, лежащие в одной плоскости и равноотстоящие друг от друга. Однако! Это определение по своей сущности равносильно определению Евклида.

С развитием науки определение параллельных прямых претерпевало некоторые изменения. В современном школьном курсе геометрии параллельные определены, как прямые, лежащие в одной плоскости и не пересекающиеся.

Нам стало интересно, откуда произошел значок параллельности прямых и мы выяснили, что в III веке н. э. древнегреческий математик Папп пользовался для обозначения значком =. Так же поступал в XVIII в. после введения Рекордом знак равенства вошел в общее употребление, стали пользоваться ll , которой ввел Уильям Оутред.

Изучая теорию параллельных прямых, мы встретили термин - аксиома параллельных прямых, само слово аксиома нам знакомо(аксиома- утверждение которое не требует доказательства), поэтому нам стало интересно, какова аксиома параллельных прямых и кто ее ввел?

Этот вопрос имеет большую историю. В «Началах» Евклида содержится 5-ый постулат, из которого следует, что через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Многие математики , начиная с древних времен, предпринимали попытки доказать 5-ый постулат Евклида, т. е. вывести его из других аксиом. Однако эти попытки каждый раз оказывались неудачными. И лишь в прошлом веке было окончательно выяснено, что утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе других аксиом Евклида, а само является аксиомой. Огромную роль в решении этого непростог7о вопроса сыграл великий русский математик Н. И. Лобачевский.

Параллельные прямые очень часто встречаются в живописи. Вот один из примеров - картина Пабло Пикассо « Мужская голова».

Направление в котором выполнена эта картина- Кубизм. Этот стиль преобладал в эпоху Ренессанса. Главным направлением этого стиля является построение объемной фигуры из геометрических элементов.

Применение в архитектуре параллельных прямых очень важно и необходимо. Перед вами известные архитектурные сооружения, поглядев на которые, мы видим, что параллельные прямые здесь присутствуют.

Представьте, как бы выглядели эти знаменитые здания, если бы инженер, составляя план здания, не использовал при этом параллельные прямые. Не были бы они такими красивыми, яркими и, наверное, не смогли бы прослужить так долго.

А представьте себе, если бы рельсы не были параллельными, то они где-нибудь бы сходились и поезд претерпевал бы крушение.

А почему электрические провода параллельны? Если бы они не были параллельными, значит, соприкасаясь друг с другом, происходит замыкание, пробои, электрическая цепь размыкается и ток отключается.

Вывд один: без параллельных прямых невозможно.

На уроках геометрии мы выполняли построение с помощью угольника и линейки. Нам стало интересно существуют ли другие способы построение параллельных прямых, и некоторые из них мы вам покажем. Изобретательская мысль человечества не стоит на месте. Для построения параллельных прямых был изобретён прибор-рейсшина. Этот прибор мы смогли найти. Он состоит из линейки и цилиндра. Катая его по поверхности, можно легко построить параллельные прямые. Есть ещё одна конструкция рейсшины, которая состоит из планшета, прикреплённой к нему двигающейся линейки. ( посмотрите, как легко с помощью рейсшины можно это сделать)

2-ой способ построения параллельных прямых только с помощью одной линейки

3-ий способ именно он изучается в школьном курсе геометрии

4-ый и 5-ый способы- с помощью циркуля и линейки

Изучив вопросы по данной теме, мы подтвердили выдвинутую гипотезу и пришли к следующим выводам: а) Каждый обучающийся 7 класса должен знать историю параллельных прямых б) Параллельные прямые часто встречаются в окружающей нас жизни: в быту, в живописи, в архитектуре, при строительстве различных объектов и т. д. Параллельные прямые необходимы.

в) Умение строить параллельные прямые пригодится на практике.

Завершить выступление по данной теме мы хотим словами: « Было бы легче остановить Солнце, легче сдвинуть Землю, чем свести параллели к схождению». Надеемся, что этот проект, заинтересует кого-нибудь и пригодится при построении параллельных прямых.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)