Учеба  ->  Среднее образование  | Автор: | Добавлено: 2015-03-23

Функциональный метод решения уравнений

В стандартном курсе школьной математике свойства функций применяются в основном для построения их графиков. Функциональный метод решения уравнений применяют тогда и только тогда, когда уравнение F(x) = G(x) в результате преобразований или замены переменных не может быть приведено к тому или иному стандартному уравнению, имеющему определенный алгоритм решения.

В отличие от графического метода, знание свойств функций позволяет находить точные корни уравнения, при этом не требуется построения графиков функций. Использование свойств функций способствует рационализации решения уравнений.

В работе рассмотрены следующие свойства функции: область определения функции; область значений функции; свойства монотонности функции; свойства выпуклости функции; свойства четности и нечетности функции.

Цель работы: провести некоторую классификацию нестандартных уравнений по использованию общих свойств функций, описать суть каждого свойства, дать рекомендации по его использованию, указания к применению.

Вся работа сопровождается решением конкретных задач, предлагавшихся на ЕГЭ различных лет.

Глава 1. Использование понятия области определения функции.

Введем несколько ключевых определений.

Областью определения функции y = f(x) называется множество значений переменной х, при которых функция имеет смысл.

Пусть дано уравнение f(x) = g(x), где f(x) и g(x)- элементарные функции, определенные на множествах D1, D2. Тогда областью D допустимых значений уравнения будет множество, состоящее из тех значений х, которые принадлежат обоим множествам, то есть D = D1∩ D2. Ясно, что когда множество D пустое (D= ∅), то уравнение решений не имеет. (Приложение № 1).

Примеры.

1. arcsin (x+2) +2x- x2 = x-2.

ОДЗ:-1 <=х+2<=1,х2-х>=0⇔-3<=х<=-1,0<=х<=2⇒решений нет.

Ответ: решений нет.

2. (х2-4х+3 +1)log5х5 + 1х(8х-2х2-6 + 1) = 0.

ОДЗ: х2-4х+3>=0,х>0,8х-2х2-6>=0⇔х∈(-infinity;1∪ 3;infinity),х>01<=х<=3⇒ х=1,х=3.

Проверка: х = 1.

(1-4+3 +1)log515 + (8-2-6 + 1) = 0,

0 = 0 - верно.

х = 3. (9-12+3+1)log535 +13(24-18-6+1) = 0, log535 +13 = 0 - неверно.

Ответ: 1.

Часто оказывается достаточным рассмотреть не всю область определения функции, а лишь ее подмножество, на котором функция принимает значения, удовлетворяющие некоторым условиям (например, только неотрицательные значения).

Примеры.

1. x+27-x(x-9 +1) = 1.

ОДЗ: x-9>=0, x>=9.

При x>=9 x+2>0, 7-x<0, (x-9 +1) >0, таким образом, произведение трех сомножителей, стоящих в левой части уравнения отрицательно, а правая часть уравнения положительна, значит, уравнение решений не имеет.

Ответ: ∅.

2. 3-x2+ x+2 = x-2.

ОДЗ: 3-x2>=0,x+2>=0,⇔ 3-x(3+x)>=0,x>=-2,⇔ -3<=x<=3,x>=-2,⇔

⇔ -3<=x<=3.

На множестве допустимых значений левая часть уравнения - положительна, а правая - отрицательна, значит, уравнение решений не имеет.

Ответ: решений нет.

Глава 2. Использование понятия области значений функции.

Областью значений функции y = f(x) называется множество значений переменной y при допустимых значениях переменной x.

Функция y = f(x) называют ограниченной снизу (соответственно сверху) на множестве Х, если существует такое число М, что на Х выполняется неравенство fx>=М (соответственно fx<=M).

Функция y = f(x) называется ограниченной на данном промежутке (содержащемся в области ее определения), если существует такое число М >0, что при всех значениях аргумента, принадлежащих данному промежутку, имеет место неравенство f(x)

Пусть дано уравнение f(x) = g(x), где g(x) - элементарные функции, определенные на множествах D1, D2. Обозначим область изменения этих функций соответственно E1 и E2. Если х1 является решением уравнения, то будет выполняться числовое равенство f(x1) = g(x1), где f(x1) значение функции f(x) при х = х1, а g(x1) - значение функции g(x) при х = х1. Значит, если уравнение имеет решение, то области значений функций f(x) и g(x) имеют общие элементы (Е1∩Е2 !=∅). Если же таких общих элементов множества Е1 и Е2 не содержат, то уравнение решений не имеет.

Для оценки выражений используются базовые неравенства. (Приложение №2).

Примеры:

Пусть дано уравнение f(x) = g(x). Если f(x)>=0 и g(x)<=0, то решением уравнения является решение системыfx=0,gx=0.

Примеры.

1. x2+2xsinxy+1=0.

Решение. В левой части есть единица, значит, можно воспользоваться основным тригонометрическим тождеством: x2+ 2xsinxy+ sin2xy+cos2xy=0.

Сумма первых трех членов представляет собой полный квадрат:

(x+sinxy)2+cos2xy =0.

Следовательно, в левой части сумма квадратов, она равна нулю тогда, когда одновременно равны нулю выражения, стоящие в квадратах. Запишем систему: cosxy=0,x+sinxy=0.

Если cosxy=0, то sinxy= +-1, поэтому эта система равносильна совокупности двух систем: x+1=0,cosxy=0 или x-1=0,cosxy=0.

Их решениями являются пары чисел х=1, у = PI 2 + PIm, m∈Z, и x=-1, y = = PI 2 + PIm, m∈Z.

Ответ: х=1, у = PI 2 + PIm, m∈Z, и x=-1, y = = PI 2 + PIm, m∈Z.

Если на промежутке Х наибольшее значение одной из функций y = f(x), y = g(x) равно А и наименьшее значение другой функции тоже равно А, то уравнение f(x) = g(x) равносильно на промежутке Х системе уравнений fx=А,gx=А.

Примеры.

1. Найдите все значения a, при которых имеет решение уравнение

2cos222x-x2=a+3sin(22x-x2+1).

Решение.

После замены t= 22x-x2 приходим к уравнению cos(2t+PI3)=a-12.

Функция t=2mвозрастает, значит, она достигает своего наибольшего значения при наибольшем значении m. Но m=2х - х[2] имеет наибольшее значение, равное 1. Тогда tнаиб = 22·1-1=2. Таким образом, множеством значений функции t= 22x-x2является промежуток (0;2, а функции cos(2t+PI3)- промежуток -1;0,5). Следовательно, исходное уравнение имеет решение для тех и только тех значений a, которые удовлетворяют неравенствам -1<=a-12<12 ⇔-1<=a<2.

Ответ: -1<=a<2.

2. Решить уравнение (log23)x+a+2 = (log94)x2+a2-6a-5.

Решение.

Воспользовавшись очевидными неравенствами

1<=(log23)x+a+2=(log23)-x2+a2-6a-5<=1, заключаем, что обе части уравнения должны равняться 1, что приводит к системе x+a+2=0,0=x2+a2-6a-5. ⇔ x=-a+2,2a2-2a-1=0 и, следовательно, x= - 5+32, если a=1+32 и x=-5+32, если a= 1-32.

Ответ: x= - 5+32, если a=1+32 и x=-5+32, если a= 1-32.

Можно подробнее рассмотреть и другие уравнения. (Приложение №3).

Глава 3. Использование свойства монотонности функции.

Функцию y = f(x) называют возрастающей (соответственно убывающей) на множестве Х, если на этом множестве при увеличении аргумента увеличиваются (соответственно уменьшаются) значения функции.

Иными словами, функция y = f(x) возрастает на множестве Х, если из х1∈Х, х2∈Х и х1<х2 следует, что f(x1)

Она убывает на этом множестве, если из х1∈Х, х2∈Х и х1<х2 следует, что f(x1)> f(x2).

Функцию y = f(x) называют нестрого возрастающей (соответственно нестрого убывающей) на Х, если из х1∈Х, х2∈Х и х1<х2 следует: f(x1)<=f(x2) (соответственно f(x1)>=f(x2)).

Функции, возрастающие и убывающие на Х, называют монотонными на Х, а функции, нестрого возрастающие или нестрого убывающие на Х, называют нестрого монотонными на Х.

Для доказательства монотонности функций используются следующие утверждения:

1. Если функция f возрастает на множестве Х, то для любого числа С функция f+С тоже возрастает на Х.

2. Если функция f возрастает на множестве Х и С > 0, то функция Сf тоже возрастает на Х.

3. Если функция f возрастает на множестве Х, то функция - f убывает на этом множестве.

4. Если функция f возрастает на множестве Х и сохраняет знак на множестве Х, то функция 1f убывает на этом множестве.

5. Если функции f и g возрастают на множестве Х, то их сумма f+g тоже возрастает на этом множестве.

6. Если функции f и g возрастают и неотрицательны на множестве Х, то их произведение fg тоже возрастает на Х.

7. Если функция f возрастает и неотрицательна на множестве Х и n - натуральное число, то функция fn тоже возрастает на Х.

8. Если обе функции f(x) и g(x) возрастающие или обе убывающие, то функция h(x) = f(g(x)) - возрастающая функция. Если одна из функций возрастающая. А другая убывающая, то h(x) = f(g(x)) - убывающая функция.

Сформулируем теоремы об уравнениях.

Теорема 1.

Если функция f(x) монотонна на промежутке Х, то уравнение f(x) = С имеет на промежутке Х не более одного корня.

Теорема 2.

Если функция f(x) монотонна на промежутке Х, то уравнение f(g(x)) = f(h(x)) равносильно на промежутке Х уравнению g(x) = h(x).

Теорема 3.

Если функция f(x) возрастает на промежутке Х, а g(x) убывает на промежутке Х, то уравнение g(x) = f(x) имеет на промежутке Х не более одного корня.

Теорема 4.

Если функция f(x) возрастает на промежутке Х, то уравнение f(f(x)) = x равносильно на промежутке Х уравнению f(x) = х.

Примеры.

1. Найдите все значения a, при которых имеет ровно три корня уравнение

4-x-alog3(x2-2x+3)+2-x2+2xlog13(2x-a+2)=0.

Решение. Преобразуем данное уравнение к виду

2x2-2xlog3(x2-2x+3)= 22x-a-1log3(2x-a+2).

Если положить u = x2-2x, v=2x-a-1, то придем к уравнению

2ulog3(u+3)= 2vlog3(v+3).

Функция f (t) = 2tlog3(t+3) монотонно возрастает при t >-2, поэтому от последнего уравнения можно перейти к равносильному u = v, x2-2x = 2x-a-1⇔(x-1)2=2x-a.

Это уравнение, как видно из рисунка, имеет ровно три корня в следующих случаях:

1. Вершина графика функции у = 2x-a располагается в вершине параболы у = (x-1)2, что соответствует a = 1;

2. Левый луч графика у = 2x-a касается параболы, а правый пересекает ее в двух точках; это возможно при a=12;

3. Правый луч касается, а левый - пересекает параболу, что имеет место при a=32.

Поясним второй случай. Уравнение левого луча у = 2a-2x, его угловой коэффициент равен -2. Следовательно, угловой коэффициент касательной к параболе равен

2(х -1) = -2 ⇒ х = 0 и точка касания имеет координаты (0; 1). Из условия принадлежности этой точки лучу находим a=12.

Третий случай можно рассмотреть аналогично или привлечь соображения симметрии.

Ответ: 0,5; 1;1,5.

Можно рассмотреть подробнее и другие уравнения. (Приложение №4).

Глава 4. Использование свойств выпуклости.

Пусть функция f(x) определена на промежутке Х она называется строго выпуклой вниз (вверх) на Х, если для любых u и v из Х, u!=v и 0< λ<1 справедливо неравенство f (λμ + (1-λ)v) < λf(u) + (1 - λ)f(v), (соответственно, f (λμ + (1-λ)v) >λf(u) + (1 - λ)f(v)).

Геометрически это означает, что любая точка хорды ВС (то есть отрезка с концами в точках B(u;f(u)) и C(v;f(v)), отличная от точек В и С, лежит выше (ниже) точки А графика функции f(x), соответствующей тому же значению аргумента. (Приложение №5).

Функции строго выпуклые вверх и вниз называются строго выпуклыми.

Справедливы следующие утверждения.

Теорема 1.

Пусть функция f(x) является строго выпуклой вниз на промежутке Х, u ,v ∈X, u

Из теоремы 1 вытекает следующее утверждение.

Теорема 2.

Если функция f(x) является строго выпуклой на промежутке Х, функции u = u(x), v = v(x), u1=u1(x), v1 = v1(x) такие, что при всех х из ОДЗ уравнения f(u)+f(v) = f(u1) + f(v1) (1) их значения u(x), v(x), u1(x), v1(x) содержатся в Х и выполнено условие u+v = u1 +v1, то уравнение f(u)+f(v) = f(u1) + f(v1) (2) на ОДЗ равносильно совокупности уравнений u (x) = u1(x), u(x) = v1(x) (3).

Примеры.

1. 41-sin4x+41-cos4x=412.

Решение. Если положим fx= 41-x2, u=cos2x, v=sin2x, u1=v1=12, то данное уравнение запишется в виде (1). Поскольку f'x= -x24(1-x2)3, f''x=-2+x244(1-x2)7, то функция fx является строго выпуклой вверх на сегменте -1;1. Очевидно, что выполнены остальные условия теоремы 2 и, следовательно, уравнение равносильно уравнению cos2x = 0,5, х = PI4 +PIk2, где k∈Z.

Ответ: х = PI4 +PIk2, где k∈Z.

Теорема 3.

Пусть функция fx является строго выпуклой на промежутке Х и u,v, λv+(1-λ)u∈X. Тогда равенство f (λv+(1-λ)u) = λf(v)+(1-λ)f(u) (4) справедливо в том и только и том случае, если либо u=v, либо λ=0, либо λ=1.

Примеры: sin2xcos3x+cos2xsin3x∙1+sin2xcos3x+cos2xsin3x= sin2xcos3x1+cos3x+cos2xsin3x1+sin3x.

Решение.

Уравнение имеет вид (4), если fx=x1+x= x+x2, u=sin3x, v= cos3x, λ=sin2x.

Очевидно, что функция fx является строго выпуклой вниз на R. Следовательно, по теореме 3 исходное уравнение равносильно совокупности уравнений sinx=0, sin2x=1, cos3x=sin3x.

Отсюда получаем, что его решениями будут PIk2, PI12+PIn3, где k,n∈Z.

Ответ: PIk2, PI12+PIn3, где k,n∈Z.

Использование свойств выпуклости применяется при решении и более сложных уравнений. (Приложение № 6).

Глава 5. Использование свойств четности или нечетности функций.

Функция fx называется четной, если для любого значения х, взятого из области определения функции, значение - х также принадлежит области определения и выполняется равенство f-x= fx. Функция fx называется нечетной, если для любого значения х, взятого из области определения функции, значение - х также принадлежит области определения и выполняется равенство f-x=- fx.

Из определения следует, что области определения четной и нечетной функций симметричны относительно нуля (необходимое условие).

Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значения, а нечетная - равные по абсолютной величине, но противоположного знака.

Теорема 1.

Сумма, разность, произведение и частное двух четных функций являются четными функциями.

Теорема 2.

Произведение и частное двух нечетных функций представляют собой четные функции.

Пусть имеем уравнение F(x)=0, где F(x) - четная или нечетная функция.

Чтобы решить уравнение F(x) = 0, где F(x) - четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, симметричные полученным, и для нечетной функции корнем будет х = 0, если это значение входит в область определения F(x). Для четной функции значение х = 0 проверяется непосредственной подстановкой в уравнение.

Примеры.

1. 8x=2x+2+x-2.

Решение.

В обеих частях уравнения имеем четные функции. Поэтому достаточно найти решения для x>=0. Так как x=0 не является корнем уравнения, рассмотрим два промежутка: (0;2, 2;infinity.

а) На промежутке (0;2 имеем:

8x= 2x+2-x+2, 23x=24, x= 43.

b) На промежутке 2;infinity имеем:

8x= 2x+2+x-2,23x=22x, x=0.

Но так как х = 0 не является корнем уравнения, то для х>0 данное уравнение имеет корень x= 43. Тогда x=- 43 также является корнем уравнения.

Ответ: 43; - 43.

Автор полагает, что работа может быть использована учителями и учащимися общеобразовательных типов на факультативных занятиях, при подготовке к математическим олимпиадам, сдаче ЕГЭ, вступительным экзаменам в технические учебные заведения.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)